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1 Abstract

We report on the progress in the VerifyThis long-term challenge 20201 that
targets a formal analysis of the secure PGP keyserver HAGRID.2

A major concern in the design of the PGP keyserver HAGRID is that con-
firmed identities in published keys are authenticated and confidential otherwise.
The underlying security property requires reasoning about non-interference [7],
value-dependent information flow [10,8], as well as declassification [2]. We present
a high-level reference model, written in Scala, that is detailed enough to cap-
ture these key concerns, but abstracts away from the internals of the server.
Functional correctness and information flow security of the model is currently
being analyzed using automated random testing via ScalaCheck, a variant of
QuickCheck [6]. A comparison of behavior against the implementation in HA-
GRID is planned for future work.

2 Models

We have modeled the server, the client, the communication, and the attacker.3

Scala is a programming language that supports both functional and object-
oriented concepts, so that adequate choices regarding the abstraction level of
data types and the encoding of state transitions can be made. The added benefit
is that models can be executed and debugged interactively within an IDE.

Data Model: In contrast to other preliminary work in the challenge,4 we
model keys explicitly as an immutable data type that stores a set of abstract
identities (i.e., email addresses) [3, Sec 5.11]. This aspect is relevant, because
regardless of which identities were originally uploaded with a given key, only the
subset of confirmed identities should be visible in the results returned by queries
to the server.

Components: The client and the server are modeled as stateful classes
which expose their functionality a set of operations. The server interface closely
resembles that of the HAGRID API5 and consists of operations for lookup,
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requests for email validation and management access, and finally confirmation
and deletion of associations between keys and identities. Internally, the server
stores all keys every uploaded, the association between confirmed identities and
keys, as well as the necessary bookkeeping for authenticated access in terms of
tokens. A client object, on the other hand, stores a set of keys alongside those
tokens received by the server, in order to be able to execute requests (e.g. in unit
tests or randomly).

Communication: HAGRID uses two channels to communicate with users:
a web-based interface for the lookup, upload, request for validation of keys,
and management of these; and regular email for authentication tokens that are
needed for certain operations. Each channel is modeled as an unordered collec-
tions of messages of the respective type, containing sender/receiver information.
These messages are distributed by glue code in an actor-based approach, where
the association between a client and its mailbox is explicit.

Adversary: We assume that all communication is secure, i.e., both chan-
nels are encrypted. The adversary has ordinary access to all operations of the
server but we assume that he/she cannot guess authentication tokens. As a con-
sequence, the adversary has access to all information that is supposedly public,
unless of course the server leaks secret or unconfirmed information.

3 Test Approach

We consider two kinds of properties of interest: functional correctness and se-
curity. In our setting, correctness means primarily that uploaded keys can be
looked up successfully. Security, on the other hand, expresses that no secret or
unconfirmed information is visible to the adversary.

We use property-based testing via ScalaCheck, a tool that enumerates inputs
according to a generator schema, runs the system under test, and checks prop-
erties of the resulting states. For functional correctness, we might specify, for
example, that a key can be successfully downloaded from the keyserver after an
upload; and that certain previously confirmed identities in the key are present.

Dynamic monitoring of information flow is a little trickier. There are some ex-
isting approaches, such as tagging runtime values [1], and security type systems,
such as Jif [9] for Java, and hybrid monitors that employ logical reasoning [4].

However, we aim to test non-interference directly: Starting out with a pair of
initial states that are indistinguishable by the adversary, the system is secure if
any subsequent pair of states after some interaction steps is still indistinguish-
able. This semantic criterion is parametric in the model of the adversary, and
gives fine-grained control over what is deemed secret or public information, based
on the current state or in terms of the history of the execution. The flexibility is
desirable, because the association between keys and confirmed email addresses is
dynamic and changes over time with declassification of the association between
identities and keys once a key is confirmed. Recent knowledge-based models of
security show that indeed, declassification can be conflated with assumptions on



attacker knowledge (i.e., the declassified bit of information), such that a test run
can simply be aborted when such an action happens [5].

The current state of the testing efforts is quite preliminary but we expect
to make substatial progress soon. As a future step, we aim to cross-validate the
model against the actual implementation, e.g., by replaying “interesting” traces
from the model against the real server code.
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